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CHAPTER 4

Linear regression and R

The t-test and its ANOVA extension from last chapter were suitable when the independent variables

were categorical. The categorical nature of those variables made it easy to group the records (trials)

into groups of identical factors and compare the means. However, such techniques are completely

unsuitable when there exist non-categorical independent variables. In such cases, there is no way

to separate the records (trials) into a useful number of cases from which we can meaningfully

compare means.

There are a couple solutions. The first is to turn the non-categorical data into categorical data

and use the previous results. This, however, is very inefficient, as we are discarding some rather

important information. The second method takes advantage of the (effectively) continuous aspect

of the data. This second method is called linear regression. The standard way of performing linear

regression is using the Ordinary Least Squares (OLS) framework.
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Figure 4.1: Left Panel: Plot of five points. Center Panel: Line of best fit through the data. Right Panel: Error of
estimation for the second point.

4.1 The method

The method (in the bivariate case) is rather straight-forward to understand. I will use this case to

extend it to multiple independent variables.

In linear regression, one is trying to calculate the line of best fit for the data; that is, one tries to

calculate a linear function that minimizes the unexplained variance. You probably did something

similar at some point in high school.

For our example, let us assume we have five data points: {(1, 2), (2, 9), (3, 5), (4, 7), (5, 10)}. One

way we can estimate the line of best fit is to plot the point and, by eye, estimate there the line

should go. The second way is to set up a series of equations in the square of the error, which is

what we wish to minimize. The six equations will be:

ei = β0 + xiβ1 − yi (4.1)

t =

5∑
i=1

e2
i (4.2)

There are six equations here, since the first line is actually five equations, one for each datum.

Now, all we have to do is substitute the five equations in Eqn 4.1 into Eqn 4.2, differentiate the
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resulting equation in each of the two parameters (β0, β1), set the two equations equal to zero, and

solve for the two parameters.

Doing this gives us β0 = 2.4 and β1 = 1.4. Thus, the equation for the line plotted in the central

panel of Figure 4.1 is y = 1.4x+2.4. The expected value of y when x = 2 isE
[
y
]

= 1.4×2+2.4 = 5.2.

The actual value of y, when x = 2 was 9, therefore, the error is e2 = 9−5.2 = 3.8,1 which is indicated

in the right panel of Figure 4.1.

4.1.1 Goodness of fit

We can measure how good this model fits the data by comparing the variance in the data with

the variance in the residuals; the residuals measure how much variation remains unaccounted for.

This is the famous (or infamous) R2 measure (Eqn 4.3).

R2 := 1 −
SSR
SST

(4.3)

In equation 4.3, SSR is the sum of the squares of the residuals (or errors); the SST is the sum of the

squares of the y values (about its mean). Thus, for this example, we can calculate SSR = (−1.8)2 +

(3.8)2 + (−1.6)2 + (−1.0)2 + (0.6)2 = 21.6; and SST = (−4.6)2 + (2.4)2 + (−1.6)2 + (0.4)2 + (3.4)2 = 41.2.

Thus, for this model, R2 = 0.4757. In the social sciences, this R2 is acceptable. In the physical and

biological sciences, this R2 is too low for the model to be of interest.

Adjusted R-squared

The strength of the R2 measure is that it is a ‘Proportional Reduction in Error’ measure; that is, we

can conclude that this model reduces the unexplained error by 47.57%. This is its strength (and its

limit).

There is a measure that is frequently (and inappropriately) used to measure the reduction in

error. It is called the ‘adjusted R-squared.’ The adjusted R-squared (Eqn 4.4) adjusts for both the

number of independent variables you are using (p) as well as the number of data points in the

sample (n).

R
2

:= 1 − (1 − R2)
n − 1

n − p − 1
(4.4)

1The error is also called the residual.
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It should only be used to determine if the addition or removal of an independent variable is

supported.2 Unfortunately, I have seen far too many use it to quantify the error reduction caused

by the model.

※ For the record, the adjusted R-squared helps the researcher determine the appropriate variables

to include. It does not directly measure the reduction in error.

Now for a general caveat: There is a certain simplicity and attraction to the R2 measure. however,

in my view, too much importance is given to it in social science research. Since we are used to such

low values of the R2, it really tells us little about the model that other statistics do not. I check that

the model does not violate the assumptions behind OLS and nothing else. In science, we care more

about the effect of our variables than the complete model.

4.1.2 Matrix representation

Extending equations 4.1 and equation 4.2 to handle multiple independent variables introduces a

level of complexity that is unnecessary. We can actually write the entire system in matrix form. In

matrix form, we need to solve the equation 4.5 for B.

Y = XB + E (4.5)

In the equation, Y is the vector of outcome values (values of the dependent variable), X is the

matrix of independent variables, with the first column all 1’s), E is the vector of random errors

(more on that later), and B is the vector of parameter values.

For our example, we have the following:



2

9

5

7

10


=



1 1

1 2

1 3

1 4

1 5



 β0

β1

 +



e1

e2

e3

e4

e5


To solve the matrix equation, we make certain assumptions about E to eliminate it (more on

2To determine if the variable(s) should be included in the model, compare the adjusted R-squared values. If the model
has a higher adjusted R-squared with the variable(s) included, then include the variable(s). Otherwise, exclude it (them).
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that later) and use some matrix algebra to get Eqn 4.6, where XT indicates the transpose of the

matrix and X−1 indicates the inverse of the matrix.

B =
(
XTX

)−1
XTY (4.6)

Solving the matrix equation gives us the coefficients (B), the residuals (E).

E =



−1.8

3.8

−1.6

−1.0

0.6


; B =

 2.4

1.4



The advantage to this form is that it looks just the same no matter how many independent

variables we include; the formulas in Eqn 4.1, however, become unwieldy quickly. Not that any of

this is important to you and your calculations. That the computer uses the matrix form is between

the computer and its operating system.

※The important things for your understanding are the following items:

1. We made one assumption about the E vector: The errors are independently, normally dis-

tributed with mean zero and variance σ2. In symbols: ei
iid
∼ N(µ, σ2).

2. We made two assumptions about the X matrix: There is some variation in the independent

variables, and the independent variables are not linear combinations of each other.

3. Under these three assumptions, there is an explicit formula for the answer (the coefficients).

Also, under these assumptions, we can calculate an expected value for the dependent variable

given values for the independent variables. This is useful when you wish to predict outcomes.

However, it is better to interpolate than to extrapolate; it is better to predict within the data range

than outside the data range.
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4.2 Assumptions

There has been a bit of discussion about just how many assumptions are made when doing linear

regression. I have given three assumptions. However, there is a lot of subtlety in those three

assumptions.

4.2.1 Normality of errors

We assumed that ei
iid
∼ N(0, σ2). This implies several things that may not be met by your data.

First, it assumes that the mean error is zero. This is actually not a testable assumption, because the

formula self-zeroes the mean using the constant term.

It also implies that the errors are distributed normally. This is testable. One way of testing this

assumption is to perform a normality test on the residuals (actual less predicted). If the test says

the residuals are normal, then the assumption is met by the data. There are two tests that can be

used: the Q-Q Plot and the Shapiro-Wilks Test.3

It also implies that the the errors are independent of the independent variables. If not, then

this is evidence that your model is misspecified. To test this assumption, calculate the correlations

between the residuals and the independent variables.

It also implies that the variance of the residuals is constant (what is called homoskedastic, as

opposed to heteroskedastic). To test this assumption, plot the residuals against the dependent

variable and visually determine if the variance of the residuals are constant. One can also perform

a linear regression of the residuals against the dependent variable.

Violations

Violations of this assumption are common. Solutions to such violations are often worse than the

original violation. The nice thing is that OLS is very robust to minor violations of its assumptions.

As such, as long as things are approximately alright, there is nothing to worry about.

There are a couple violations that are rather serious, however. The first is correlation in the

error terms. The second is heteroskedasticity in the error terms. The first is usually solved using

Time Series analysis or Spatial Analysis. The second is often solved using a weighting scheme to

reduce the heteroskedasticity.

3Actually, there are a slew of normality tests. All give different p-values, but all give about the same interpretation.
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As for the normality of the errors, in practice, the errors are rarely normal. However this is

of little concern to OLS. This only becomes important when the predictions produce unrealistic

values. In such cases, one usually resorts to transforming the dependent variable (see Chapter ??)

or to using Generalized Linear Models (see Chapter ??).

4.2.2 The independent variables

The first assumption is that there is some variation in the independent variables. This means that

one (or) more of the independent variables only takes on a single value in the data. When this

happens, we cannot calculate its effect on the dependent variable (its effect cannot be distinguished

from the constant term).

When there is little variation in any of the independent variables, the effects of that variable are

difficult to estimate. This results in very large standard errors, which implies the variable is not

statistically significant. It may be, but because there is little variation, it is indistinguishable from

the background noise.

Finally, and relatedly, when an independent variable is a linear combination of others, there

is no way to distinguish its effect from the effect of the other variables. And, when correlation is

very high, inflated standard errors will result; the variable’s effects are indistinguishable from the

background noise.

4.3 The R session

For thisR session, let us read in data, perform linear regression on it, then check that the assumptions

are met. The data we will use will be from the ssm2.csv file, which I have in my current working

directory (see Section ??). The ssm2 data consists of five variables: nominal stateId, continuous

yearPassed, percent pctWin (percent vote in favor of the measure), dichotomous civilBan

(whether the measure also contained a ban on civil unions), and percent religPct (the percent

of people in the state agreeing that religion is an important part of their lives).

I used this data to quickly predict the outcome of the 2009 ballot measure in Maine to outlaw

same sex marriages, without resorting to any published opinion polls. How close did I come? Let

us just say I won the bet (although not with what we are doing in this chapter).
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 4034.1609 715.6774 5.64 0.0000

yearPassed -2.0095 0.3577 -5.62 0.0000
civilBan -3.7331 1.9988 -1.87 0.0723
religPct 0.9452 0.1074 8.80 0.0000

Table 4.1: Results table for the regression of percent support of a generic ballot outlawing same-sex marriage against
the three included variables. The R2 for the model is 0.7801. The probabilities calculated are two-tailed probabilities.
The hypotheses were one-tailed hypotheses. As such, all three explanatory variables are statistically significant at the
standard level of significance (α = 0.05).

4.3.1 The modeling

Here is the model I am fitting to this data (Eqn 4.8). As we are social scientists and not statisticians,

the independent variables actually hold meaning in our models. In fact, the variables are our sole

reason for existing as social scientists (alright, people are important, too).

pctWin = β0 + β1(yearPassed) + β2(civilBan) + β3(religPct) (4.7)

In R, performing linear modeling is very straight-forward (as it is in all modern statistical

packages). The command is lm. As lm returns a lot of information, we should store its results

in a variable, which I will call model.1. Once the computer computes the regression (and all

associated information), we can summarize the results in the standard results table (Table 4.1).

Notice that all three variables of interest are statistically significant at the α = 0.05 level.4

Additionally, the model has an R2 of 0.7801, which is a phenomenal fit in public policy. The

direction of the coefficients also agrees with theory: States that are more religious should vote

against single-sex marriage at a higher rate; Measures that also ban civil unions should have a

harder time passing; Measures passed later should have a more difficult chance of passing, as the

young tend to support single-sex marriage, whereas the elderly tend to oppose it.

Thus, the equation for the line of best fit (also known as the prediction line) is approximately

pctWin = 4034.16 − 2.01(yearPassed) − 3.73(civilBan) + 0.95(religPct) (4.8)

According to this model, what is the expected vote in Maine? To answer this, we need the

4This assumes that I specified before hand that theory suggests banning civil unions makes passing the measure more
difficult, which I did, but which I did not say above.
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information about the Maine ballot measure: yearPassed = 2009, civilBan = 0, religPct = 48. With

this information, and under the assumption that the model is correct, we have our prediction that

42.41% of the voters will vote in favor of this ballot measure.

The R code for this part of the analysis is as follows:

data <- read.csv("ssm2.csv", header=TRUE)
attach(data)

model.1 <- lm(pctWin ˜ yearPassed + civilBan + religPct)
summary(model.1)

predict(model.1, newdata=data.frame(yearPassed=2009, civilBan=0, religPct=48) )

Note the inclusion of the predict() function, which predicts the dependent variable value

given values for each of the independent variables (stick to its syntax closely, or read the help file

on predict()).

4.3.2 Checking the assumptions

There are basically three assumptions that we need to check—one concerning the residuals and

two concerning the independent variables. The residuals need to be independently distributed as

N(0, σ2). The independent variables need to have variation and need to not be linear combinations

of each other.

The independent variables

It is quite easy to examine the independent variables to determine if there is variation. The years

range from 1998 until 2008, the civilBan dichotomous variable is divided between zero (n=13) and

one (n=19), and the religious percent ranges from 51 to 85%. All of these are sufficiently variable

to create a model that represents the data.5

The level of multi-collinearity among the independent variables can be tested in many ways.

The easiest is to note that none of the standard errors in Table 4.1 are extremely large compared to

our expectations (the intercept term is so large because the years are measured in thousands and

the percents are measured in hundreds). From that, we can conclude that there is no issue with

5Note that the lowest level of religiosity in a state was 51, whereas the level in Maine was 48. This means we extrapolated
when we predicted the outcome of the Maine election. The 3% is not serious, however. I would have worried if we were
trying to predict the outcome of a state whose level of religiosity was 25%.
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Figure 4.2: A Q-Q Plot of the residuals of Model 1.

multi-collinearity.6

The residuals

The only thing we need to check is that the error terms (residuals) are independently distributed

N(0, σ2). Actually, this requires several tests. The first test is to check that their means are zero.

Before we can check the residuals, let us calculate the residuals. We know that the residuals are

defined as the difference between the measured value and the model-predicted value. So, let us

define resids as:

resids <- pctWin - predict(model.1)

However, we can do it easier than that; as with all modern statistical programs, there is a

function that automatically calculates the residuals: residuals(model.1).

Calculating the mean of the residuals results in a zero value.7 As such, the residuals pass that

test.

The second test is the test of normality. To do that, let us use the Q-Q Plot. Figure 4.2 is a

Q-Q Plot of the residuals. If the residuals were perfectly normal, then the residuals would line up
6We could have also checked the correlation, cor(data) to see if any correlations were close to either 1 or -1.
7Actually, the answer given depends on your computer. Most computers will give some number on the order of 10−13,

which is the underflow level—the smallest number representable on your computer.
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along the diagonal line. Here, the residuals are not perfectly normal. We can quantify how close

the residuals are to normality by using either the Kolmogorov-Smirnov test or the Shapiro-Wilk

test. The K-S test is extremely sensitive. As such, it is falling into disuse for this purpose. The

Shapiro-Wilk test is custom-made for tests of normality. As such, I recommend it. Performing

shapiro.test(resids) gives us a p-value of just over 0.05. As such, we can conclude that

there is not compelling evidence that the residuals are not normally distributed.8

The third test is that the residuals are uncorrelated with the independent variables. Using

cor(resids, data) as a shortcut tells us that there is essentially zero correlation between the

residuals and the independent variables.

Finally, the fourth test is a test of homoskedasticity: is the variance of the residuals constant? The

typical test of this is the Breusch-Pagan test. The null hypothesis of the test is that the residuals are

homoskedastic. To use the Breusch-Pagan test, one needs to load the lmtest library. I recommend

downloading and installing that library, since it includes several tests that can be used with linear

models.

If you do not have the Breusch-Pagan test available in your statistical package (which would

be surprising), you can use graphical means: plotting the residuals against the dependent variable

and looking for shifts in the variance. This is not as precise as the Breusch-Pagan test, but it does

definitively work in some cases; the change in variance is usually not very noticeable. Figure 4.3

is the residual plot for this model. Note that there may or may not be a change in the variance. It

is difficult to tell. I would conclude, however, that if there is heteroskedasticity, then it is not too

serious.

As the residuals passed all of the tests, we can conclude that this model does not violate the

assumptions of Ordinary Least Squares. Here is the R script for the analysis of residuals, including

the functions I used to save the plots to my working directory.

library(lmtest)

cor(data)
resids <- residuals(model.1)
mean(resids)

png("normalqqplot.png", width=600, height=300)
qqnorm( resids, ylab="Quantiles of the Residuals" )
abline(0,4.5)
dev.off()

8The null hypothesis in the Shapiro-Wilks test is that of normality.
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Figure 4.3: A scatterplot of the vote percentage against the residual. There is no pattern that ‘jumps’ out at me. The
two dots in the lower-left area may simply be outliers—or not.

shapiro.test(resids)
cor(resids,data)
bptest(model.1)

png("residplot.png", width=600, height=300)
plot(resids, pctWin, las=1, pch=16,

xlab="Residuals", xlim=c(-15, 10),
ylab="Vote Percentage", ylim=c(45,90)
)

dev.off()

? ? ?

Thus, what is our conclusion about the model assumptions? There is no apparent multi-

collinearity in the independent variables. The residuals are approximately normally distributed.

The mean of the residuals is zero. The variance appears to be constant. In short, the model does

not appear to violate the assumptions. As such, we can have confidence in the model in that it can

be applied to the population, and not just to the sample.

However, there is one thing we overlooked, one thing that all but invalidates this analysis. We

will discuss it in the next chapter.
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4.4 Conclusion

In this chapter, we started our entry into what is arguably the most important part of statistical

analysis in the real world: Regression. The hypotheses we tested in this chapter were rather

straight-forward. In the next chapter, we will look at using the same data to answer a slightly

different question, and, in doing so, we will be confronted with knowledge that the errors are not

normally distributed. In fact, predictions of vote shares less than zero or greater than 100% are

possible with this model. Next chapter, we will begin our entry into transformation of the data to

force predictions to make sense.

As you leave this chapter, please keep in mind three important things. First, remember that

you must know your data before you can analyze it. Second, remember that you must test your

assumptions before you can be satisfied with the model (see, for instance, Section 4.2). Finally,

remember what the numbers in the regression table actually mean (for instance, Table 4.1). All

three of these are extremely important. If you forget any of these, please go back through the

chapter.

4.5 Extension

None, yet. Move to the next chapter, as it is an extension of what we did here.

4.6 R commands

predict(model, newdata) As with almost all statistical packages, R has a predict function. It takes

two parameters, the model, and a dataframe of the independent values from which you

want to predict. If you omit the newdata, then it will predict based on the independent

variables of the data itself, which can be used to calculate residuals. The dataframe must

list all independent variables with their associate new values. You can specify multiple new

values for a single independent variable.

residuals(model) R also has a function that calculates the residuals in the data; that is, it calculates

the difference between the actual value and the predicted value. This function is extremely

useful when doing analyses on the residuals.
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qqnorm(model) One of the graphical techniques used to determine normality of residuals is the

Q-Q Plot. In R, the qqplot function is actually a more general tool that plots the quantiles of

any two sets of numbers against each other. The qqnorm is dedicated to plotting residuals

against the normal distribution to determine normality.

shapiro.test(x) The Shapiro-Wilks test is used to quantify the degree of normality in a group of

data. The null hypothesis is that the data is normally distributed. Thus, a p-value greater

than α = 0.05 signifies that there is not enough evidence to conclude the data is not normally

distributed.

cor(x,y) This function determines the correlation between two vectors of data (of the same length).

You can find the correlations between all of the variables in a data set simply by using

cor(data). Apparently, this does not work in Mac OSX if any variable is non-numeric.

However, Windows machines will simply report NA for such cases.

bptest(model) One of the most important tests in determining homoskedasticity is the Breusch-

Pagan test. The null hypothesis of this test is that the residuals are homoskedastic (a good

thing). Thus, we look for a p-value greater than α = 0.05 to tell us that we cannot reject the

null hypothesis of homoskedasticity.
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